57 research outputs found

    Neural Correlates of Behavioural Olfactory Sensitivity Changes Seasonally in European Starlings

    Get PDF
    Possibly due to the small size of the olfactory bulb (OB) as compared to rodents, it was generally believed that songbirds lack a well-developed sense of smell. This belief was recently revised by several studies showing that various bird species, including passerines, use olfaction in many respects of life. During courtship and nest building, male European starlings (Sturnus vulgaris) incorporate aromatic herbs that are rich in volatile compounds (e.g., milfoil, Achillea millefolium) into the nests and they use olfactory cues to identify these plants. Interestingly, European starlings show seasonal differences in their ability to respond to odour cues: odour sensitivity peaks during nest-building in the spring, but is almost non-existent during the non-breeding season.This study used repeated in vivo Manganese-enhanced MRI to quantify for the first time possible seasonal changes in the anatomy and activity of the OB in starling brains. We demonstrated that the OB of the starling exhibits a functional seasonal plasticity of certain plant odour specificity and that the OB is only able to detect milfoil odour during the breeding season. Volumetric analysis showed that this seasonal change in activity is not linked to a change in OB volume. By subsequently experimentally elevating testosterone (T) in half of the males during the non-breeding season we showed that the OB volume was increased compared to controls.By investigating the neural substrate of seasonal olfactory sensitivity changes we show that the starlings' OB loses its ability during the non-breeding season to detect a natural odour of a plant preferred as green nest material by male starlings. We found that testosterone, applied during the non-breeding season, does not restore the discriminatory ability of the OB but has an influence on its size

    Own Song Selectivity in the Songbird Auditory Pathway: Suppression by Norepinephrine

    Get PDF
    Like human speech, birdsong is a learned behavior that supports species and individual recognition. Norepinephrine is a catecholamine suspected to play a role in song learning. The goal of this study was to investigate the role of norepinephrine in bird's own song selectivity, a property thought to be important for auditory feedback processes required for song learning and maintenance.Using functional magnetic resonance imaging, we show that injection of DSP-4, a specific noradrenergic toxin, unmasks own song selectivity in the dorsal part of NCM, a secondary auditory region.The level of norepinephrine throughout the telencephalon is known to be high in alert birds and low in sleeping birds. Our results suggest that norepinephrine activity can be further decreased, giving rise to a strong own song selective signal in dorsal NCM. This latent own song selective signal, which is only revealed under conditions of very low noradrenergic activity, might play a role in the auditory feedback and/or the integration of this feedback with the motor circuitry for vocal learning and maintenance

    Rapid testosterone-induced apparent diffusion coefficient (ADC) changes in the sexually dimorphic medial preoptic nucleus of male Japanese quail.

    Full text link
    Testosterone (T) influences the volume and cellular characteristics of a variety of steroid-dependent brain nuclei in many vertebrates. In castrated quail, the volume of the sexually dimorphic (males > females) medial preoptic nucleus (POM), a key area in the control of male sexual behavior, is markedly increased by T but previous studies always assessed this effect after a period of 8-14 days and its specific time-course was unknown. We recently found that following treatment with T, the POM volume increases in a time-dependent fashion: a significant increase was already detected after only one day and the response reached it maximum (volume doubling) after 14 days of treatment. This however raised the question of the cellular mechanism underlying such a rapid brain plasticity (increase in cell size, neuropil volume, dendritic branching, extracellular space?). To research whether a change in extra- vs. intra-cellular space could be responsible for the rapid T-induced increase in POM volume, we repeatedly analyzed by in vivo diffusion-weighted magnetic resonance imaging (DW-MRI) the brain of castrated male quail before as well as after 1, 2, 7 and 14 days of T implantation. MRI was performed on a 7T-system (Bruker) using a multislice diffusion weighted-spin echo sequence. Coronal slices with an image resolution of 100*100*500µm³ were obtained covering the whole telencephalon. Images were accurately coregistered allowing voxel-wise paired comparisons of the ADC data between the different time periods. The ADC significantly increased after one day of T treatment (696±16 vs 758±30 µm²/s, p=0.011, N=5) in POM and this effect apparently persisted during the whole experiment. By contrast, T insensitive regions like the nucleus rotundus (586±170 vs 511±26 µm²/s, p-value=0.24) and nucleus mesencephalicus lateralis, pars dorsalis (934±107 vs 911±64 µm²/s, p=0.68) were not affected after the first day nor later in the experiment. These data indicate that T increases the extracellular water volume in POM specifically, either as a result of cell shrinkage or of an increase in the space between cells, and that changes in the ratio of extra- to intra-cellular water mediate, at least in part, the fast plasticity of the POM volume observed after exposure to T

    Topography and Lateralized Effect of Acute Aromatase Inhibition on Auditory Processing in a Seasonal Songbird

    Full text link
    It is increasingly recognized that brain-derived estrogens (neuroestrogens) can regulate brain physiology and behavior much faster than what was previously known from the transcriptional action of estrogens on nuclear receptors. One of the best examples of such neuro- modulation by neuroestrogens concerns the acute regulation of sensory coding by the auditory cortex as demonstrated by electrophys- iological studies of selected neurons in zebra finches. Yet, the spatial extent of such modulation by neuroestrogens is not known. Using functional magnetic resonance imaging, we demonstrate here that acute estrogen depletion alters within minutes auditory processing in male European starlings. These effects are confined to very specific but large areas of the auditory cortex. They are also specifically lateralized to the left hemisphere. Interestingly, the modulation of auditory responses by estrogens was much larger (both in amplitude and in topography) in March than in December or May/June. This effect was presumably independent from changes in circulating testosterone concentrations since levels of the steroid were controlled by subcutaneous implants, thus suggesting actions related to other aspects of the seasonal cycle or photoperiodic manipulations. Finally, we also show that estrogen production specifically modulates selectivity for behaviorally relevant vocalizations in a specific part of the caudomedial nidopallium. These findings confirm and extend previous conclusions that had been obtained by electrophysiological techniques. This approach provides a new very powerful tool to investigate auditory responsiveness in songbirds and its fast modulation by sex steroids

    Functional changes between seasons in the male songbird auditory forebrain

    Get PDF
    The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.International audienceSongbirds are an excellent model for investigating the perception of learned complex acoustic communication signals. Male European starlings (Sturnus vulgaris) sing throughout the year distinct types of song that bear either social or individual information. Although the relative importance of social and individual information changes seasonally, evidence of functional seasonal changes in neural response to these songs remains elusive. We thus decided to use in vivo functional magnetic resonance imaging (fMRI) to examine auditory responses of male starlings that were exposed to songs that convey different levels of information (species-specific and group identity or individual identity), both during (when mate recognition is particularly important) and outside the breeding season (when group recognition is particularly important). We report three main findings: (1) the auditory area caudomedial nidopallium (NCM), an auditory region that is analogous to the mammalian auditory cortex, is clearly involved in the processing/categorization of conspecific songs; (2) season-related change in differential song processing is limited to a caudal part of NCM; in the more rostral parts, songs bearing individual information induce higher BOLD responses than songs bearing species and group information, regardless of the season; (3) the differentiation between songs bearing species and group information and songs bearing individual information seems to be biased toward the right hemisphere. This study provides evidence that auditory processing of behaviorally-relevant (conspecific) communication signals changes seasonally, even when the spectro-temporal properties of these signals do not change
    corecore